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LINEAR GEOMETRY

We consider first the electrostatic problem of a rectangular beam in a

straight rectangular box (cgs, esu).

I':_I._.
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Green's Function,
for line charge p&(x - x]) sy - y]) at X1s Y9
y > Yy
n‘"(h + .y])
Sinh — nwx
_ W . 1 . NaX ;. Na(h=y)
V> = BpZ - o sin mo— sin 53 Sinh >
Sinh —
" W
Yy <Yy
ne(h - y;)
Sinh 2 W = MM nax sy nr(hty)
V< = sz : o sin —= sin W Sinh 5w
= Sinh .

*Sponsored by Defense Advanced Research Projects Agency ARPA Order No. 3718,
Anend. 37 Contract Number N60921-81-LT-WO031.




By integration over X1 from w - hX tow + hx, and by integration over

¥q from -hy to y using V> and from y to h_ using V<, the potential

y
function within the (uniform) beam becomes

nt (h=h_ )

¥ Day
vo84o w2 1 1 Cosh 2W Cosh 2w . onmo . n"hx . X
= 2 3 - nmh Sitn — Sin —2W Sin W
n n Cosh == 2
7 W

wherein it will be recognized that sin %} is equal to
+1 0 -1 0 +1 etc.
forn= 1 2 3 4 5 etc.

As a check, we note that

h
2 1 oo o MY e
VeV = =16 E: 7 Sin > Sin —-= sin o

‘{—4np for w - hX <X <KW+ hx

0 forO<x<w- hX and for w + hx < X < 2w.

T In particular, if h, =w,
VV=-16p|sin™elsins e lgins X &
= 0 2w 3 2w 5 2w
= -16 p-% = =4qp (for 0 < x < 2w). [cf. B.O. Pierce, Eq. 808.]
L
(- )
If we form v .
Yy y=0
we obtain
nw(h-—hy)
Cosh ————— nrh
16 o :E: 1 2w sin I sin -2 gin DX (1)
n C nzh 2 2w 2w .
n OShW

When self magnetic forces are also taken into account in this straight—pipe
situation, correspondingly the gradient of effective field becomes multiplied

by the factor 1 - 82, where g8 = v/c.



TOROIDAL GEOMETRY

We next consider the corresponding problem in toroidal geometry.

recag— 2w s
!
h
y
' ’ 2hc
= ™x !
_ b-a
/l, a ' W= 5
R o= -
_4, R:.bﬁ.
A~ b - 2
' =W b-a
n-'ﬁ' b+a
This toroidal case has been analysed by Dr. Lloyd Smith. For the
electrostatic problem we now employ, in our present notation, radial functions
Fo(msr) = ag [ 9 0kyr) Yo (kpa) = Yo (kr) 3o (k) |
ce [o fom2) Y fony2 -Y(z(n)—_':— J(Z(n)%)]
o[o(o R) o(o R o{“o R olo R .
where the kn’ or Zo(n) = kn R, are such as to make Fo(n;r) vanish for r = b and
g is an arbitrarily selected factor (e.g., a, = 1).
The Green's function then may be written:
.V>.Y]:
_ r Fo(n;r]) Fo(n;r) Sinh zo(n) R Sinh zo(n) T
V_ = 4qpR
> z Tl L] 2 ] h
n o) | r [Fy(nsr )]° dr Sinh 2z S
d 0 .R_




hc '.‘..Y] hC ty
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n zo(ny r [Fo(n;r )}° dr Sinh 27 S
a ° R

Integration over the location ris ¥1s of the source involves first the

following
h fy h h + hy h
-y ty Y. f -y
Sinh Zo(") C__ h Sinh zo(n) C_ ! dy1 + Sinh zo(n) —c——_-— Sinh zo(n) -ET—]-'-
Ry R . Ry 2 R
he
Sinh 2 z_(n) —=
" R
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_ _R R R ° 'R ° R
-z (n) h
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Sinh 2 zo(n) =
hc - hy
5 Cosh z_(n) =
- R 1- = ﬁ Cosh z (n) L
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Followed by an integration over r (from R - hx toR + hx)'




For this latter integration we follow the suggestion of Dr. Smith in that we

— R
take p(r‘l) =p r

, whereupon we obtain

a
- h. -nh T
()
Cosh z (n) =
1- g hR Cosh z (n) L
Cosh zo(n) —é}- R
R J
he
Finally, then -~ for this toroidal electrostatic problem -- if we form
a(-:V/a ) [ , we obtain
y y =0
R+hx
h. - h
. Loy
J(T Fo(n,rl)dr1 Cosh zo(n) —
o R-h, R
4vp R 5 Fo(n;r) - (2a)

n ' 12 he

f r [F . (n;r )]° dr Cosh z_(n) =

0 0 R

a

Correspondingly, for the magnetic problem, we obtain a similar result -- save
that

(i) a function Fy{ is employed, in which the Bessel functions are of
order 1,

(ii) the zeros are the quantities zy(n) for which Fi(n;b) = O,

and

(iii) a factor -g2 is to be appended for the contribution to the force
gradient:




n _/r r'[Fl(n;r')] 2r

a

1 R

Fy(nsr) (2b)

=

C

R

Cosh zl(n)

These terms [(2a) and (2b)] combined give the expression proposed by

Dr. Smith, if we identify our oR with his eo R.

In the work that follows, we shall identify

R+hx

F (n;r

oms 1)dr

1

R-h

TERM1=ﬁZ ——
n -jr r'[Fo(n;rl)]Zdrl

a

J/.R+hx
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X
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0
Folnsr) -
c
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R
Fy(nsr) - . (3b)
Cosh zl(n) <
R

Following what we believe to have been the suggestion of Dr. Smith, we have

undertaken to evaluate the integrals (and the subsequent sums)that appear in

the above expressions nume-ically.*

*4Eh-order integration by use of the extended Simpson's Rule (Abramovitz and

Stegun, §25.4.6)




We remark that TERM 1 and TERM 2 will be rather close to one another

numerically -~ and indeed, when w/R << 1, will each be rather close* to the

quantity

nn(h - hy)

h
4 1 Cosh W .onr . Ty nx
?Z = = sin ZFsin -~ sin =g
n Cosh —=

exhibited by expression (1) [p. 2] divided by 4xp.

*Thus if F_ (or F,) be approximated by
0 1
R
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2 9

==l -

and zo(n) = zl(n) = n
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if we identify x = r - (R - w)
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—- thus providing agreement, in this limit, with expression (4). Note that
terms for which n is even will be expected to be small [since the factor
sin n w/2 in the above approximation vanishes for n even]. Also, moreover,

ifh = wandx = w(r = R), this approximation suggests that

-

w(h. - h) 3n(h -~ h) S«(h - h )
Cosh _.E__X._ Cosh .___(_:_X_ Cosh ___C___L_
4 2W 1 2W 1 2w
TERM 1 = TERM 2 = —= - + = - eee
T -n'hc 3 31rhc 5 5'rrhC
Cosh Tw- | Cosh T COSh——W

Such approximate behavior has proven of use in checking some aspects of

operation of the computer program CPRTS.

COMMENT:
We recall that for a straight beam pipe the electric and magnetic self
forces are expected virtually to cancel, through the action of the

factor -'7= 1 - 32 .

Y

In the toroidal geometry, on the other hand, the electric and magnetic
forces may differ slightly in magnitude even in the limit 82 > 1.

To compare the relative sizes of such effects, it may be helpful,

therefore, to think of a quantity analogous to -l?- that we form from the
Y

toroidal solutions as

TERM 1 - TERM 2
Avg. of TERM 1 and TERM 2

2
TERM 1 + TERM 2

. (TERM 1 - TERM 2).




THE PROGRAM

The program CPRTS (Library LASLETT) first computes the first 100 “zeros"
[zo(n) and z](n) of Fo(n,b) and F](n,b)] by successive application
of Newton's method -- employing in this connection the Sub-routine
(Mrs. Barbara (Harold) Levine) LJBJY for Bessel functions and (optionally)
their 1§£-derivatives. (The chamber radii, a and b, are entered for this
purpose.) Optionally printed, in tabular form, are the zo(n) and then the
z](n), each accompanied by the value to which FO or F] has thereby
been reduced to virtually zero.

Next, with hx entered, the program then computes (and prints)

R+hx R+hx
[ Fo(n;r] )dr] [ F](n;r])dr]
R-hx R--hx
RHO¢ = —5 RHOL = B
' ' e V120"
./- r [Fo(n;r')] 2drl -/f r [F](n,r )]%dr
a a

[Integration steps are taken to be inversely proportional to n.]

Actually the numerators and denominators of each of these quotients are
calculated in two ways: First, directly; second by subtracting some simple
form from the integrand and then supplementing the integral of the result by
the analytic integral of the simple form that had been subtracted. The
ratios (RHO¢ and RHO1) computed by the "direct" and by the “difference“
procedure are each printed. One then has the option of selecting whether
one will retain for future use results (quotients) obtained by the direct or
by the difference procedure and such values are then printed, once again, as
a summary. [For a given number of integration steps the results obtained by

the difference procedure are believed to be somewhat more accurate.]




By entering hc, h , and the field-point radius (rB), the program

y
is then in a position to compute the successive terms (n=1, 2, 3, ...) and
to print the successive cumulative sums of the expressions TERM 1 and TERM 2.

Upon the completion of such a tabulation, the program can be directed to

accept entries of new values of hc’ h , and rB -~ or alternatively to

Y
return to earlier stages of the program.

RESULTS

Results for several different parameters (including rB) are summarized

in Tables that follow.
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a = 99.00 b = 1010.00 w = 10.00
hX = 9.90
hc = 5.00 hy = 4.50
TERM 1 - TERM 2
rs TERM 1 TERM 2 AVERAGE
1000.00 0.89152 8556 0.89151 9000 1.0719 x 1072
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a = 87.50 b = 112.50 W = 12.50
h, = 8.40
h. = 10.00 h. = 2.00
rg TERM 1 TERM 2 L L
92.80 0.65204 9938 0.65143 3302 9.46136 x 1072
95.20 0.82374 9845 0.82296 2369 9.56422 x 107
97.60 0.86558 6391 | 0.86472 6339 9.94100 x 10~%
100. 00 0.86185 8622 g 0.86100 3476 9.92704 x 10~*
102. 40 0.82865 0396 0.82786 4456 9.48908 x 10~%
104.80 0.75552 2275 0.75486 2845 8.73183 x 1077
107. 20 0.57508 3712 0.57460 6194 8.30690 x 10~°

13
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a = 187.50 b = 212.50 W o= 12.50
h, = 12.46
h, = 10.00 = 2.00
rg | TERM 1 TERM 2 TN e 2
189. 32 0.49962 2554 0.49954 6695 1.51844 x 10~
192.88 0.81219 1130 0.81201 3801 2.18358 x 107%
196.44 0.88358 9404 0.88336 2741 2.56558 x 10~%
200.00 0.88990 1674 0.88966 5564 2.65357 x 10°%
203.56 0.85477 4512 0.85456 3070 2.47396 x 10°%
207.12 0.76014 5318 0.75999 0786 2.03313 x 1074
210.68 || 0.45297 1393 0.45290 9272 1.37151 x 107%
a = 187.50 b =212.50 = 12.50 (as above)
- 8.40
hc = 10.00 = 2.00 (as above)
rg TERM 1 TERM 2 TR i 2
192.80 0.63065 1758 0.63050 8072 2.27863 x 107%
195.20 0.80521 8479 0.80503 1029 2.32821 x 1074
197.60 0.85568 1330 0.85547 1844 2.44848 x 107°
200.00 0.86149 2848 0.86127 9728 2.47415 x 1074
202.40 0.83723 5836 0.83703 5575 2.39222 x 1074
204.80 0.77118 1650 0.77101 0104 2.22470 x 1074
207.20 0.59231 7299 0.59219 0831 1.13537 x 1074
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a=38.50 b =412.50 W =12.50

h, = 8.40

he = 10.00 h, = 2.00
rg TERM 1 TERM 2 L
392.80 0.62054 1001 0.62050 6263 5.5982 x 10~°
395. 20 0.79634 6686 0.79630 0904 5.7492 x 107>
397.60 0.85090 4066 0.85085 2326 2.0808 x 107>
400.00 0.86140 1722 0.86134 8483 6.1807 x 107°
402. 40 0.84168 4122 0.84163 3534 6.0104 x 107°
404.80 0.77933 7854 0.77929 4057 5.6199 x 107>
407.20 0.60139 2252 0.60135 9661 5.4194 x 107°
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